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Using a renormalization method, we study critical scaling behaviors of all period p-tuplings
(r=2,3,4,...) in two symmetrically coupled one-dimensional (1D) maps near the symmetry line.
We find three (five) kinds of fixed points of a renormalization operator for the case of even (odd)
p. The relevant “coupling eigenvalues” associated with coupling perturbations vary depending on
the kinds of fixed point, while the relevant eigenvalue associated with scaling of the nonlinearity
parameter of the uncoupled 1D maps is a common one to all the fixed points. With an example, we

also confirm the renormalization results.

PACS number(s): 05.45.+b, 03.20.+i, 05.70.Jk

Critical behaviors of period p-tuplings (p = 2,3,4,...)
were much studied in one-dimensional (1D) unimodal
maps [1-8]. It was found that the asymptotic scaling be-
haviors of the period p-tupling sequences characterized
by the orbital and parameter scaling factors, a and 4,
vary depending on p. Recently the critical behavior of pe-
riod doublings (p = 2) was also studied [9-11] in coupled
1D maps, which are used as models of coupled nonlinear
oscillators such as Josephson-junction arrays, chemically
reacting cells, and so on [12]. New scaling behaviors as-
sociated with coupling perturbations were found in such
1D coupled maps.

In this Brief Report we are interested in the criti-
cal behaviors of all the other higher period p-tuplings
(p = 3,4,...) in two-coupled 1D maps. We first investi-
gate the dependence of the scaling behaviors on p using
a renormalization method. It is found that in the case of
even (odd) p there exist three (five) kinds of fixed points
of a renormalization operator. All the fixed points have
a common relevant eigenvalue § associated with the crit-
ical scaling of the nonlinearity parameter of the uncou-
pled 1D maps. However, the relevant “coupling eigenval-
ues” (CE’s) associated with coupling perturbations vary
depending on the kind of fixed points. As an example,
we study the scaling behavior of period triplings (p = 3)
in dissipatively coupled 1D maps, and confirm the renor-
malization results. An extended version of this work in-
cluding a detailed account of the renormalization results,
the numerical results for the linear-coupling case, an ex-
tension to many coupled maps, and so on will be given
elsewhere [13].

We consider a map T consisting of two symmetrically
coupled 1D maps,

. Tt41 = F(wt,yt) = f(zt) +g($t,yt)’
T: { ytil = F(ye, xe) = f(ye) + 9(ye, ze), (1)
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where f(z) is a 1D unimodal map with a quadratic maxi-
mum, and g(z,y) is a coupling function obeying the con-
dition g(z,z) = 0 for any z. This two-coupled map is
invariant under the exchange of coordinates such that
z < y. The set of all points which are invariant un-
der the exchange of coordinates forms a symmetry line
y = z. An orbit is called an “in-phase” orbit if it lies
on the symmetry line, i.e., it satisfies z; = y; for all ¢.
Otherwise it is called an “out-of-phase” orbit. Here we
study only the in-phase orbits.

Stability of an in-phase orbit with period q is deter-
mined from the Jacobian matrix J of T'?, which is the ¢
product of the Jacobian matrix DT of T along the orbit:

_ f(ze) — G(z¢) G(z)
7=11 ( G(z)  f(z0) - G(zr) ) G

t=1

where the prime denotes a derivative, and G(z) =
99(x,y) /0y |y=<; hereafter, G(z) will be referred to as
the “reduced coupling function” of g(z,y). The eigen-
values of J, called the stability multipliers of the orbit,
are

q

M=T]F (=), Ae=][1f (@) —2G(=)].  (3)

t=1

Note that the first stability multiplier A; is just that of
the uncoupled 1D map and the coupling affects only the
second stability multiplier A5, which may be called the
“coupling stability multiplier.” The in-phase orbit is sta-
ble only when the moduli of both multipliers are less than
or equal to unity, i.e., -1 < \; <1fori=1,2.

We now consider the period p-tupling (p = 2,3,4,...)
renormalization transformation N for a coupled map T,
which is composed of the p-times iterating (T(®)) and
rescaling (B) operators:

N(T) = BT® B~ (4)

Here the rescaling operator B is
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5=(5 2) ®)

because we consider only in-phase orbits.

Applying the renormalization operator A to the cou-
pled map (1) n times, we obtain the n-times renormalized
map T, of the form

T . T+l = Fo(zt,yt) = fa(xe) + gn(ze,9e), (6)
* Yir1 = Fru(ys, Te) = fu(ye) + gn(ye, 24).

Here f,, and g,, are the uncoupled and coupling parts of

the n-times renormalized function F;,, respectively. They

satisfy the following recurrence equations:

fs1(z) = af® (z)’ (7)
gn+1(w’y)= aF'(lp) (2’ %) —af,(lp)(§>, (8)

where £ fn(f,(.p_l)(a:)) and F,(.p)(a:,y) =
Fn(F,(lp_l) (z,¥), F,(,p_l)(y, z)). [Note that the right-hand
side of Eq. (8) consists of f, and g, because F,(z,y) =
fn(x) + gn(x,y).] Hence the recurrence relations (7) and
(8) define a renormalization operator R of transforming
a pair of functions (f,9), (fa+1,gn+1) = R(fns gn).

A map T, with the nonlinearity and coupling parame-
ters set to their critical values is called a critical map:

T. - Ti+1 = Fc(mtayt) = fc(mt) + gc(mh yt), (9)
N Yer1 = Fe(ys, xe) = fe(ye) + 9c(ye, ze).

A critical map is attracted to a fixed map T* under iter-
ations of the renormalization transformation N:

* Ti4+1 = F*(It’yt) = f*(wt) +g*(zt7 yt)7
T { Yer1 = F*(ye, z¢) = f*(ye) + 9" (s, 7). (10)

Here (f*,g*) is a fixed point of the renormalization op-
erator R, i.e., (f*,g*) = R(f*,g*). Note that f*(z) is
just the fixed function in the 1D map case, which varies
depending on p [4,5,7,8]. Only the equation for the cou-
pling fixed function g*(x, y) is therefore left to be solved.
One trivial solution is g*(z,y) = 0. In this zero-coupling
case, the fixed map (10) consists of two uncoupled 1D
fixed maps, which is associated with the critical behavior
at the zero-coupling critical point.

However, it is not easy to directly find coupling fixed
functions other than the zero-coupling fixed function
g*(z,y) = 0. We therefore introduce a tractable recur-
rence equation for a reduced coupling function G(z) =
89(z,y)/0y|y=s. Differentiating the recurrence equation
(8) for g(z,y) with respect to y and setting y = z, we
obtain a recurrence equation for G(z):

Gunale) = P (2) (1)

e ()
e (2)
w1 (2)en(re(2)). a2

where the subscript 2 of F,, denotes a partial derivative
with respect to the second argument. Then Egs. (7) and
(12) define a “reduced renormalization operator” R of
transforming a pair of functions (f,G), (fnt+1,Gn+1) =
R(fn,Gn). We look for fixed points (f*,G*) of R, which
satisfy (f*,G*) = R(f*, G*). Here f* is just the 1D fixed
function and G* is the reduced coupling fixed function of
g%, i.e., G*(z) = 0g*(x,y)/0Y |y==. We find three (five)
solutions for G* in the case of even (odd) p:

G*(z) = 0, (13a)
G*(z) = -;—f"(w), (13b)
G*(2) = 51"'(2) — 1), (13¢)
G*(z) = 51f*(@) +1, (134)
G*(z) = (@), (13¢)

where the solutions (13a)—(13c) exist for any p, but the
solutions (13d) and (13e) exist only for odd p. The re-
duced fixed points (f*, G*) with solutions (13b)—(13e) are
associated with critical behaviors at critical points other
than the zero-coupling critical point. The first three so-
lutions (13a)—(13c) have been already found for the low-
est even case with p = 2 [11], and similarly one can show
that all five solutions (13a)—(13e) exist for the lowest odd
case with p = 3. Then, by induction, one can obtain the
solutions (13) for all the other cases of higher period p-
tuplings (p = 4,5,...) [13].

Consider an infinitesimal perturbation (k, ®) to a fixed
point (f*,G*) of the reduced renormalization operator
R. Linearizing R at the fixed point, we obtain the recur-
rence equation for the evolution of (h, ®), (hnt1, Pny1) =
L(hn,®,). A pair of perturbations of (h*,®*) is called
an eigenperturbation with eigenvalue v if £(h*,&*) =
v(h*,®*). All fixed points (f*, G*) have a common rel-
evant eigenvalue & (i.e., the relevant eigenvalue for the
cases of the uncoupled 1D maps) associated with the crit-
ical scaling of the nonlinearity parameter of the uncou-
pled 1D maps. However, the coupling eigenperturbations
(0, ®*) with relevant CE’s v, depend on the kinds of fixed
points. The relevant CE’s are associated with the crit-
ical scaling of the coupling parameter. Like the case of
obtaining the reduced coupling fixed functions G*’s, by

TABLE I. Reduced coupling fixed functions G*(z), rele-
vant CE’s v., and the critical coupling stability multipliers A3
in all the period p-tupling (p = 2,3,4,...) cases are shown.
Note that the case G*(z) = 1f*'(z) has no relevant CE’s,
and a and A* are the orbital scaling factor and the critical
stability multiplier for the 1D case, respectively.

G*(z) Ve Az

0 a, p A"

1 nonexistent 0

317 (z) — 1) P 1

3l (z) +1] P -1
ftl(z) a’ p _A*
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induction, we also obtain the relevant CE’s for each fixed
point (f*, G*) in all the period p-tupling cases [13], which
are listed in Table I.

In the case of a critical map (9), the stability multipli-

ers A1, and Az ,, of the in-phase orbits with period ¢ = p™

(n = 1,2,...) converge to the critical stability multipli-
ers A} and A}, respectively, as the level n increases to
the infinity. Since A; depends only on the nonlinearity
parameter, A} is always the same as the critical stabil-
ity multiplier A* for the 1D case. However, the critical
coupling stability multiplier A} depends on the reduced
coupling function G*(x) as follows [13]:

AL = AT — 2G*(3), (14)

where the 1D critical stability multiplier A\* is given by
A* = f'*(Z), and £ is the fixed point of the uncoupled 1D
fixed map, i.e., & = f*(£). Substituting G*’s of Eq. (13)
into Eq. (14), one can obtain A}’s, which are also listed
in Table I.

The structure of the critical set (set of critical points)
and the critical behaviors vary depending on whether
the coupling function g(z,y) has a leading linear term
or not; a coupling is called linear or nonlinear according
to its leading term. As an example, we study the period-
tripling case in two dissipatively coupled 1D maps (1)
with f(z) = 1 — Az? and g(z,y) = £[f(y) — f(z)], and
confirm the renormalization results. Here A is the non-
linearity parameter of the uncoupled 1D map and c is the
coupling parameter. Note that the dissipative coupling
is a kind of nonlinear coupling.

It follows from (3) that the stability multipliers of in-
phase orbits with period ¢ = 3" (n = 1,2,...) become

12r / q=27 i) ]
1| -
10 |- -
9 .
< sf s §
< / 9=9
S 7F .
£ | 1
6 |- .
5 -
4
3 L [ 1
-1 0 1
c

FIG. 1. Stability diagram of the in-phase orbits with period
q = 3" (n = 1, 2, 3) in two dissipatively coupled 1D maps. The
stable region of each periodic orbit is bounded by four bifur-
cation curves associated with tangent and period-doubling bi-
furcations. Here the horizontal (nonhorizontal) solid lines de-
note the period-doubling bifurcation curves A1 ,n (A2,n) = —1,
whereas the horizontal (nonhorizontal) dashed lines denote
the tangent bifurcation curves A1,n (A2,n) = 1.

q
An = Hfl(l‘t)v A2n = (1= ¢)T i m, (15)

t=1

because the reduced coupling function for the dissipative-
coupling case becomes G(z) = §f'(x). The stable re-
gion of each periodic orbit of level n (period 3") in
the space of the nonlinearity and coupling parameters is
bounded by four bifurcation curves associated with tan-
gent and period-doubling bifurcations (i.e., those curves
determined by the equations, A;, = %1 for ¢ = 1,2).
The stability regions for the cases of the first three levels
(n = 1,2,3) are shown in Fig. 1. Since the “height” h,
of the stability region of level n, which is defined as the
length of the ¢ = 1 line segment inside the stable region
of level n, geometrically contracts in the limit of large n,

hp, ~6~™ for large n, (186)

we choose as a vertical coordinate the quantity — In(A4* —
A) instead of A. Here § (= 55.247026---) and A*
(= 1.786 440255 563 639 354 534 447 - - -) are the relevant
eigenvalue associated with the critical scaling of the non-
linearity parameter A and the accumulation point of the
period-tripling sequence for the 1D case, respectively. An
infinite sequence of such stability regions accumulates to
a critical line connecting two ends (A*,¢}) and (A4*,c}),
where ¢; = 0 and ¢} = 2, as will be seen below.
Consider two dissipatively coupled 1D maps (1) on the
line A = A*, in which case the reduced coupling function
is given by G(z) = §f'(z). By successive actions of the
reduced renormalization operator R on (f, G), we obtain

@) =af?(2), Gu@=FhE@ a7

Cp = Ci_l — 36121——1 + 3cn—1’ (18)

where fo(z) = f(z), Go(z) = G(z), and ¢y = c. Here
fn converges to the 1D fixed function f*(z) because the
nonlinearity parameter A is set to its critical value A*.

The recurrence equation (18) for ¢ has three fixed
points c*:

=01, 2. (19)

Stability of a fixed point c¢* is determined by its stability
multiplier 4 given by p = dcy, /dcp—1|c+. The fixed point
at c* = 1 is superstable (u = 0), whereas the other ones
at ¢c* = 0,2 are unstable (4 = 3). The basin of attraction
to the superstable fixed point becomes the open interval
(0,2) because any initial ¢ inside the interval 0 < ¢ < 2
converges to ¢* = 1; all points outside the interval diverge
to the plus or minus infinity. Consequently the critical set
for this dissipative-coupling case is the critical line seg-
ment joining two ends ¢; = 0 and ¢} = 2 on the A = A4*
line. Inside the critical line segment all critical maps are
attracted to the fixed maps with the same reduced cou-
pling function G*(z) = % f*'(z). These fixed maps have
no relevant CE’s, because the fixed point c* = 1 is super-
stable. On the other hand, the critical map at the left
end (i.e., the zero-coupling critical point) is attracted to
the zero-coupling fixed map with G*(z) = 0, and the crit-
ical map at the right end (A*,2) to another fixed map
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with G*(z) = f*'(z). These two fixed maps have one
relevant CE v, = 3, because the fixed points c* = 0,2
are unstable ones with stability multiplier 4 = 3. Sub-
stituting ¢* = 1, 0, 2 into Eq. (15), we also obtain the
critical coupling stability multipliers A; = 0, A\*, —\*,
respectively, where A* (= —1.872705---) is the critical
stability multiplier for the 1D case.

However, the structure of the critical set for a linear-
coupling case with a leading linear term is different from
that for a nonlinear-coupling case [13]. For even (odd) p,
there appear three (four) kinds of fixed maps in a linear-
coupling case, while only two (three) kinds of fixed maps
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appear in a nonlinear-coupling case (see the above exam-
ple of dissipative coupling). Note also that the critical
behavior near the zero-coupling point is governed by all
two CE’s a and p for a linear-coupling case, while it is
governed by only one CE p for a nonlinear-coupling case
(e.g., see the above dissipative-coupling case).
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